Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin.
نویسندگان
چکیده
Ferroportin (Fpn), a ferrous iron Fe(II) transporter responsible for the entry of iron into plasma, is regulated post-translationally through internalization and degradation following binding of the hormone hepcidin. Cellular iron export is impaired in mice and humans with aceruloplasminemia, an iron overload disease due to mutations in the ferroxidase ceruloplasmin (Cp). In the absence of Cp Fpn is rapidly internalized and degraded. Depletion of extracellular Fe(II) by the yeast ferroxidase Fet3p or iron chelators can maintain cell surface Fpn in the absence of Cp. Iron remains bound to Fpn in the absence of multicopper oxidases. Fpn with bound iron is recognized by a ubiquitin ligase, which ubiquitinates Fpn on lysine 253. Mutation of lysine 253 to alanine prevents ubiquitination and maintains Fpn-iron on cell surface in the absence of ferroxidase activity. The requirement for a ferroxidase to maintain iron transport activity represents a new mechanism of regulating cellular iron export, a new function for Cp and an explanation for brain iron overload in patients with aceruloplasminemia.
منابع مشابه
β-Amyloid Precursor Protein Does Not Possess Ferroxidase Activity but Does Stabilize the Cell Surface Ferrous Iron Exporter Ferroportin
Ceruloplasmin is a ferroxidase that interacts with ferroportin to export cellular iron, but is not expressed in neurons. We recently reported that the amyloid precursor protein (APP) is the analogous iron-exporting chaperone for neurons and other cells. The ferroxidase activity of APP has since been called into question. Using a triplex Fe2+ oxidation assay, we analyzed the activity of a solubl...
متن کاملFunctional relevance of ceruloplasmin mutations in Parkinson's disease.
Increased iron levels of the substantia nigra and the discovery of ceruloplasmin mutations in patients with Parkinson's disease (PD) imply impaired iron metabolism in this neurodegenerative disorder. Ceruloplasmin has ferroxidase activity oxidizing iron(II) to iron(III). In the present study, we analyzed the amount of ceruloplasmin, iron, ferritin, and transferrin and the ceruloplasmin ferroxid...
متن کاملMulti-Copper Oxidases and Human Iron Metabolism
Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans--ceruloplasmin, ...
متن کاملIron-Export Ferroxidase Activity of β-Amyloid Precursor Protein Is Inhibited by Zinc in Alzheimer's Disease
Alzheimer's Disease (AD) is complicated by pro-oxidant intraneuronal Fe(2+) elevation as well as extracellular Zn(2+) accumulation within amyloid plaque. We found that the AD β-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn(2+). Like ceruloplasmin, APP catalytically oxidizes Fe(2+), loads ...
متن کاملAlternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain.
Ceruloplasmin is a copper-containing ferroxidase that is essential for normal iron homeostasis. Whereas ceruloplasmin in plasma is produced and secreted by hepatocytes, in the brain a glycosylphosphatidylinositol (GPI)-anchored form of ceruloplasmin is expressed on the surface of astrocytes. By using a cDNA cloning approach, we have now determined that the GPI-anchored form of ceruloplasmin is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 26 12 شماره
صفحات -
تاریخ انتشار 2007